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Abstract—Robotic systems currently used in upper-limb reha-
bilitation following stroke rely on some form of visual feed-
back as part of the intervention program. We evaluated the 
effect of a video game environment (air hockey) on reaching in 
stroke with various levels of arm support. We used the Arm 
Coordination Training 3D system to provide variable arm sup-
port and to control the hockey stick. We instructed seven sub-
jects to reach to one of three targets covering the workspace of 
the impaired arm during the reaching task and to reach as far as 
possible while playing the video game. The results from this 
study showed that across subjects, support levels, and targets, 
the reaching distances achieved with the reaching task were 
greater than those covered with the video game. This held even 
after further restricting the mapped workspace of the arm to the 
area most affected by the flexion synergy (effectively forcing 
subjects to fight the synergy to reach the hockey puck). The 
results from this study highlight the importance of designing 
video games that include specific reaching targets in the work-
space compromised by the expression of the flexion synergy. 
Such video games would also adapt the target location online 
as a subject’s success rate increases.

Key words: arm function, haptic interface, reaching, rehabilita-
tion, robotics, shoulder abduction, stroke, therapy, upper-limb 
impairment, video games.

INTRODUCTION

Following stroke, arm function is compromised with 
clear limitations in shoulder and elbow active range of 
motion (ROM). These limitations have an effect on hand 
workspace and the ability to perform activities of daily 
living (ADLs). Previous work has demonstrated abnor-
mal coupling between shoulder abductor and elbow 
flexor muscles and between shoulder adductor and elbow 
extensor muscles [1]. Such coupling results in task-
specific reductions in upper-limb workspace and more 
specifically in elbow extension ROM when loading the 
shoulder in abduction [2–3].

Despite promising advances in recent treatment 
approaches for the hemiparetic upper limb, such as elec-
tromyographic-triggered functional electrical stimulation [4], 
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robot-aided sensory-motor training [5], bilateral isokinetic 
arm training [6], and constraint-induced movement therapy 
[7], 1.1 million people in the United States still report resid-
ual disability resulting from stroke [8]. None of these 
heavily investigated interventions directly address the pres-
ence of abnormal synergistic patterns of the upper limb that 
profoundly impair functional reaching, especially in indi-
viduals with moderate to severe stroke [9]. Our previous 
intervention work was successful in partially reducing the 
abnormal coupling of elbow flexion during isometric shoul-
der abduction following an 8-week training period [10]. 
However, the effect was not great enough for subjects to 
achieve full reaching ROM over hand workspace. Results 
from our more recent intervention work suggests that mod-
erately to severely affected people with chronic stroke can 
be trained to increase their reaching workspace and func-
tional arm use with a progressive shoulder abduction load-
ing paradigm [11–12]. The intervention protocol consisted 
of reaching movements to targets in five directions near the 
end of reaching ROM and spanning a large portion of the 
workspace while supporting a percentage of the weight of 
the arm. In this work, the Arm Coordination Training 3D 
(ACT3D) system [3] was used as a haptic interface to simu-
late the subject-specific shoulder abduction loading levels. 
Subjects were trained at progressively greater arm loading 
levels over an 8-week intervention period. Visual feedback 
in the form of an avatar of the arm displayed on a computer 
monitor was provided. The avatar and target locations were 
scaled to the individual subject’s anthropometric parame-
ters, and auditory feedback was provided when the required 
load was not being met. The results of the study showed that 
with a therapist present to provide motivation, the combina-
tion of robotics with simple visual feedback was effective in 
increasing reaching ROM at the end of the intervention. 
This improvement was related to significant gains in elbow 
extension abilities under the training conditions. Based on 
these encouraging results, the question arises whether the 
use of robotics combined with video games can provide an 
equal, or possibly more engaging, environment for upper-
limb rehabilitation in people with stroke with equally or 
greater gains in terms of reaching ability and functional use 
of the arm.

Recent advances in robotic and video game technol-
ogy have given rise to multiple systems for upper-limb 
rehabilitation for people with stroke [3,13–20]. Such sys-
tems combine robotics with computer graphics for deliv-
ery of a rehabilitation protocol. An increasingly common 
approach is the use of virtual reality games that allow 

interaction with a three-dimensional environment simu-
lated in a computer and integrated with haptic feedback. 
Systematic reviews of the effect of robotic-based therapy 
on upper-limb recovery following stroke suggest signifi-
cant improvement in motor control of the paretic upper 
limb but no significant improvement on functional abili-
ties or ADLs [5,21]. Similar reviews on the effectiveness 
of virtual reality programs for stroke rehabilitation sup-
port this application, albeit with limited evidence [22–
24]. All of these reviews recognize the potential for these 
therapeutic modalities, encouraging further research to 
establish their validity and provide evidence of their 
advantages over conventional therapy.

These rehabilitation systems differ vastly depending on 
the therapeutic approach. Most groups have adopted a task-
oriented approach where, for example, subjects complete a 
pick-and-place or grasp-and-release virtual reality task [25–
35]. A few groups have implemented systems based on a 
teaching approach where the reaching movement or task is 
guided by a predefined trajectory or set of rules [36–38]. 
Some groups have even designed therapeutic protocols 
based on both approaches [39–40]. Furthermore, some of 
these systems provide robotic assistance to the task or 
movement being performed either by moving the arm in a 
programmed trajectory or by supporting the weight of the 
limb [11,34–35,39–45]. Although most of these systems are 
prescribed for upper-limb rehabilitation, many target only 
the wrist and hand with limited ROM of the shoulder and 
elbow. Likewise, most of these systems require or provide 
complete gravity compensation, with a few exceptions such 
as the T-WREX (MARS-RERC; Chicago, Illinois) [29], 
ARMin (University of Zürich; Zürich, Switzerland) [19], 
L-EXOS (PERCRO; Pisa, Italy) [20], Freebal (Armeo-
Boom, Hocoma; Rockland, Massachusetts) [34], and 
ACT3D systems [3], which have adjustable limb-weight 
support abilities. However, only the ARMin and ACT3D

systems are able to generate loads in the vertical direction to 
simulate increased limb weight or object handling.

Based on previous results from our laboratory, we 
believe that targeted interventions that address specific 
impairments are effective in generating changes in upper-
limb motor function and functional use of the upper limb 
in people with moderate to severe hemiparetic stroke 
[10–12]. It is therefore our goal to design rehabilitation 
systems that address specific impairments: more specifi-
cally, systems that use robotics combined with video 
games to create a haptic environment in which the weight 
of the limb can be manipulated while subjects perform 
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targeted reaching movements. This study is a first step in 
achieving that goal by examining the effect of a fun and 
engaging video game environment that promotes reach-
ing compared with target reaching with visual feedback 
in the form of an avatar of the arm. We evaluated the 
effect of the two forms of feedback on reaching distance 
in a group of subjects with hemiparetic stroke under vari-
ous arm loading conditions. The results of the study 
showed greater reaching abilities during avatar feedback 
compared with video game feedback, suggesting the need 
for custom-designed video games that target the specific 
impairments, in this case, the abnormal coupling between 
shoulder abduction and elbow flexion.

METHODS

Subjects
Seven subjects with chronic unilateral hemiparetic 

stroke participated in the study: six males and one female, 
aged 50 to 80 years, and ranging from 2 to 15 years post-
stroke. We screened all subjects for inclusion. Exclusion 
criteria included difficulty sitting for long durations, 
recent changes in the medical management of hyperten-
sion, and any acute or chronic painful condition in the 
upper limbs or spine. We collected the score for the 
upper-limb portion of the Fugl-Meyer Motor Assessment 
(FMA) [46] for each subject to determine the presence 
and extent of flexion synergy and to categorize the level 
of impairment severity. The inclusion criteria for the 
study required severe to moderate impairment FMA scor-
ing with a maximum of 45 out of 66. The subjects 
included in the study scored between 10 and 43, repre-
senting severe to moderate expression of flexion synergy 
in the affected upper limb. We administered the FMA 
within 6 months of participation in this study. All sub-
jects were able to support the upper limb against gravity 
and demonstrated an ability to generate some active 
elbow extension. We measured each subject’s passive 
ROM of the affected upper limb using methods described 
elsewhere [47]. We required passive ROM to be at least 
90 of shoulder flexion, abduction, and neutral internal 
and external rotation for participation in the study. We 
used overpressure at the end of the ROM as a medical 
screening measure to verify the absence of inflammatory 
conditions at the shoulder, elbow, wrist, and fingers [48].

Experimental Setup
We seated subjects in the experimental chair with their 

arm attached to the ACT3D system through a forearm-hand 
orthosis [49]. We restrained trunk and shoulder girdle 
movement with a set of shoulder and lap straps attached to 
the experimental chair (Figure 1). Subjects were asked to 
move their upper limb to an initial position of 90° shoulder 
abduction (or close to 90° depending on the subject’s pas-
sive ROM), 45° horizontal shoulder flexion, and 90° elbow 
flexion. We placed the wrist and hand in a neutral position 
in an orthosis and interfaced with the ACT3D system 
through a gimbal. We locked the gimbal to constrain move-
ments to a plane intersecting the center of rotation of the 
shoulder, thus preventing internal and external rotation at

Figure 1.
 Experimental setup. Arm Coordination Training 3D system* provided 
haptic interface to simulate various loading conditions while subjects 
performed arm reaching movements with avatar and game feedback. 
*Sukal TM, Ellis MD, Dewald JP. Shoulder abduction-induced reductions 
in reaching work area following hemiparetic stroke: Neuroscientific 
implications. Exp Brain Res. 2007;183(2):215–23.[PMID: 17634933] 
DOI:10.1007/s00221-007-1029-6

http://www.ncbi.nlm.nih.gov/pubmed?term=17634933
http://www.springerlink.com/content/n752r13017u9u585/
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the shoulder. Note that after stroke, moderately to severely 
impaired subjects have difficulty controlling external rota-
tion. Therefore, by preventing rotation of the shoulder in 
this degree of freedom (DOF), the motor control was sim-
plified, concentrated to shoulder abduction and/or adduc-
tion in the loaded condition and shoulder extension and/or 
shoulder flexion and elbow extension and/or elbow flexion 
during reaching movements.

The ACT3D system is instrumented with potentiome-
ters to track the position of the gimbal and with a 6 DOF 
load cell (Model 45E15A4-I63, JR3 Inc; Woodland, Cali-
fornia) to allow haptic interaction.

We developed a custom software interface to calculate 
the position of the arm in real time and provide visual feed-
back of the movement performed by the subject. The feed-
back was in the form of an avatar of the arm displayed on a 
computer monitor (avatar feedback, Figure 2(a)). The soft-
ware interface also provided the option to control the com-
puter mouse with movement of the ACT3D system for use 
with Air Hockey 3D (Avalanche Team; Novosibirsk, Rus-
sian Federation; game feedback, Figure 2(b)). We initially 
mapped the workspace covered by movement of the hand 
attached to the ACT3D system onto the bottom half of the 

video game air hockey table. In order to further challenge 
subjects to extend their elbow, we only mapped the hand 
workspace requiring elbow extension onto the air hockey 
table (e.g., for a right hemiparetic subject the workspace in 
front and to the right of the right shoulder). The mapping 
was linear, which meant that the distal corners of the air 
hockey table could not be reached. Finally, we programmed 
the software interface to generate a haptic table (equivalent 
to a physical table, only it can be generated with the ACT3D

system via software) as well as forces in the vertical direc-
tion (i.e., against gravity) to simulate three different loading 
conditions: arm fully supported condition (FS), where sub-
jects were allowed to move on the haptic table without 
regard to shoulder abduction and/or adduction torques; arm 
floating condition (FL), where the weight of the limb was 
supported by the device and subjects were asked to move 
on the horizontal plane going through the shoulder while 
actively avoiding generation of shoulder torque in the 
abduction and/or adduction direction, which would result in 
the arm moving out of the plane (up or down); and a 25 per-
cent loading condition (L25), where subjects had to support 
a load in the abduction direction (equivalent to lifting the 
arm against gravity) equal to 25 percent of their shoulder 

Figure 2.
Visual feedback. (a) Avatar of arm displayed on computer monitor with example target. (b) Air Hockey 3D (Avalanch Team; Novosibirsk, Russian 
Federation) video game. Notice that player side of table is on bottom half of display. Workspace of arm was mapped onto this half of table.

http://www.ncbi.nlm.nih.gov/pubmed/17634933
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abduction maximum voluntary torque while moving their 
arm in the horizontal plane.

Experimental Protocol
Subjects sat in the experimental chair with their arm 

attached to the ACT3D system and placed in the initial 
configuration (home target). We adjusted the height of 
the experimental chair so that the plane of the arm and 
the haptic table coincided. We used the interface software 
to record the position of the arm and compute the loca-
tion of the shoulder for online calculation of the hand 
position.

Avatar Feedback
We asked subjects to perform reaching movements to 

three different targets (Figure 3): “shoulder flexion” tar-
get (SF) located on the opposite side of their shoulder
that requires mostly shoulder flexion, “reaching” target 
(RE) located directly in front of their shoulder that 
requires both shoulder flexion and elbow extension, and 
“elbow extension” target (EE) located to the right of their 

shoulder that requires mostly elbow extension. We placed 
the SF and EE at arm’s length with respect to the shoul-
der and located the RE slightly farther than arm’s length. 
We instructed subjects to reach as quickly and as far as 
possible in the direction of the target. Reaching to each of 
the three targets was repeated seven times for each of the 
three loading conditions (FS, FL, and L25). We random-
ized the order of presentation of the target and loading 
conditions. To avoid fatigue, we gave 30-second rest 
periods between reaching trials.

Game Feedback
We established mapping of the hand workspace onto 

Air Hockey 3D before data collection. When Air Hockey 
3D was initiated, we only asked subjects to play the game 
for a total of 3 minutes using the best of their abilities. 
Although we gave verbal encouragement to entice sub-
jects to reach to all the areas of the mapped workspace, 
the nature of the game was such that the reaching direc-
tion was random. We repeated each game trial twice for 
each loading condition. In a subset of subjects (five out 
of seven), we adjusted the mapping to force subjects to 
extend their elbow to reach the full workspace of the air 
hockey table and collected data for another game trial. 
The adjusted mapping was such that only half of the dis-
tal workspace of the paretic limb in the left or right direc-
tion (depending on the side of the paretic limb) was 
mapped onto the air hockey table, thus forcing subjects to 
maximally extend their elbow to reach those areas. The 
notion of using visual feedback distortion to encourage 
subjects to move beyond their self-assessed maxima is 
not new and is supported by the work from Brewer et al. 
[50]. We rotated the air hockey trials with the reaching 
trials in a random fashion. We gave 1-minute rest periods 
after the trials to avoid fatigue.

In the FS or haptic table condition, the plane of the 
arm and the haptic table coincided, thus allowing subjects 
to move on the haptic table. In the other two loading con-
ditions (FL and L25), we lowered the position of the hap-
tic table so that the plane of the arm (horizontal plane 
passing through the shoulder) and the haptic table did not 
coincide. In these loading conditions, we asked subjects 
to move in the plane of the arm while avoiding contact 
with the haptic table. We used auditory feedback (buzz-
ing noise) as well as haptic feedback to signal when the 
subject’s arm made contact with the haptic table. The 
haptic feedback consisted of a simulated viscous environ-
ment that prevented subjects from moving on the haptic 

Figure 3.
Location of reaching targets used in avatar feedback trials. EE = 
elbow extension target, SF = shoulder flexion target, RE = reaching 
target.



436

JRRD, Volume 48, Number 4, 2011
table and was only turned off when they lifted their arm 
to match the desired load and avoid contact with the hap-
tic table. We recorded endpoint position of the ACT3D

system for each trial and saved it for offline analysis. 
We asked subjects to complete a survey at the end of 

the session that asked which visual feedback was more 
engaging and which feedback they would prefer in a 
hypothetical intervention.

Data Analysis
We computed the trajectory of the tip of the middle 

finger based on the geometry of the arm and the endpoint 
position of the ACT3D system and used it for analysis of 
the avatar and game feedback trials. We extracted the 
farthest point from the home target in each reaching 
direction (SF, RE, and EE) with a ±15° tolerance from 
each of the avatar feedback trials. For the game feedback 
trials, we computed the outer envelope of all the move-
ments generated by the subject on the plane with a reso-
lution of 1°. For comparison with the avatar feedback 
trials, we also extracted the farthest points across enve-
lopes from game feedback trials that matched the target 
direction in each avatar feedback trial for comparison 
between feedback modes. Note that the subjects who 
played Air Hockey 3D with an adjusted mapping of the 
arm’s workspace to the air hockey table had an additional 
envelope included in the analysis.

We used a three-factor repeated measures univariate 
analysis of variance with interactions to determine the 
effect of feedback (avatar and game), target direction (SF, 
RE, and EE), and loading conditions (FS, FL, and L25) on 
the normalized reaching distance (dependent variable). 
We normalized the reaching distance by arm length 
(shoulder to tip of middle finger) to account for anthropo-
metric differences across subjects. We tested the condition 
of sphericity (equal variances of the differences between 
factors) of the data using Mauchley’s sphericity test. The 
data satisfied the condition of sphericity (p > 0.05) for all 
factors except for the interaction between direction and 
loading condition. We performed pairwise comparisons 
using Bonferroni’s method to adjust for multiple compari-
sons. For all statistical tests, we defined a significant 
effect or difference as p 0.05. We performed statistical 
analysis using SPSS (SPSS Inc; Chicago, Illinois).

RESULTS

Across subjects, reaching directions, and loading con-
ditions, the average reaching distances achieved by the 
subjects with the avatar feedback were significantly 
greater compared with the distances reached when playing 
Air Hockey 3D (p < 0.05). Table 1 summarizes the within-
subjects effects and Table 2 summarizes the between-
subjects effects, resulting from the statistical analysis. All 
factors and almost all interactions had a significant effect 
on distance. Only the interaction between feedback mode, 
loading condition, and subject had no effect on distance.

Post hoc analyses (Table 3) revealed that for some 
individual subjects, target directions, and loading condi-
tions, the opposite was true: subjects were able to reach 
farther with Air Hockey 3D. Figure 4 shows that subject 3 
was able to reach farther in the elbow extension direction 
across loading conditions while subjects 5, 6, and 7 were 
only able to reach farther in elbow extension on both FS 
and FL, L25, and FL, respectively. Furthermore, Air 
Hockey 3D aided subject 6 in reaching in the RE direction 
during L25, and subject 1 could reach farther in the SF 
direction during FS. Table 3 includes the test statistics for 
loading conditions highlighted in gray.

Figure 5 shows typical data for a single subject (sub-
ject 2). The thin color traces show the trajectories gener-
ated when reaching to each of the three targets (SF, RE, 
and EE) and the blue triangles indicate the maximum 
reaching distance in the direction of each target. Note that 
the location of the targets was not scaled to the length of 
the arm and therefore, subjects could overshoot the target 
in some directions. The cyan envelopes (thick lines) repre-
sent the farthest reached distance in all directions achieved 
with the game for the original hand to mouse movement 
mapping and for the adjusted mapping that encouraged 
elbow extension (see “Methods” section). The black arcs 
represent the theoretical workspace of the arm based on its 
length. Figure 5 presents the avatar- and game-reaching 
workspace for FS (Figure 5(a)), FL (Figure 5(b)), and 
L25 (Figure 5(c)). For the subject illustrated here, the 
reaching performance compared between the avatar and 
game feedback was similar for all target directions and 
loading conditions except for the EE direction and the SF 
direction during L25. It is clear that the subject reached 
farther with the avatar feedback compared with the game 
feedback in these conditions.
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The average difference in distance between the avatar 
and game feedback across subjects, target directions, and 
loading conditions was 6.0 cm. The difference was 2.0 cm 
in the EE direction, 6.3 cm in the RE direction, and 9.7 cm 
in the SF direction.

The reaching distances achieved with both the avatar 
and game feedback across subjects became significantly 
smaller when increasing shoulder abduction loading from 
FS to FL to L25 (p < 0.05). Figure 5 illustrates the reduc-
tion in reaching ability for a typical subject, especially 
when comparing L25 with FS.

All subjects chose Air Hockey 3D over the avatar as 
the more engaging feedback as well as the feedback of 
choice for hypothetical interventions.

DISCUSSION

This study evaluated the effect of a video game envi-
ronment on reaching in stroke with various levels of sup-

port. We compared the reaching distances achieved while 
playing the video game with the reaching distances 
achieved when reaching to specific targets in the work-
space with feedback provided by an avatar of the arm dis-
played on a computer monitor. The results of the study 
showed significantly greater distances achieved with the 
avatar visual feedback compared with the game visual 
feedback across subjects, loading conditions, and reach-
ing directions. This held even after further restricting the 
mapped workspace of the arm to the area most affected 
by the flexion synergy (effectively forcing subjects to 
fight the synergy to reach the hockey puck). Although 
this result was unexpected, it was not surprising. Given 
the somewhat uncontrolled movement of the hockey 
puck, it was not unusual for subjects to adopt a defensive 
strategy to guard the goal line, instead of an offensive 
strategy that would force them to reach out against the 
flexion synergy. Verbal encouragement was provided in 
all cases, however, with little effect. Subjects avoided 
reaching in the areas of the workspace that required

Table 1.
Statistical analysis results: tests of within-subjects effects.

Factor/Interaction
Type III Sum

of Squares
df Mean Square F-Value p-Value

Mode 0.535 1.000 0.535 258.864 2.68E–16

Mode × Subject 0.655 5.000 0.131 63.440 4.85E–15

Error (mode) 0.062 30.000 0.002 — —
Load 0.713 2.000 0.357 67.325 4.64E–16

Load × Subject 0.186 10.000 0.019 3.503 0.001
Error (load) 0.318 60.000 0.005 — —
Direction 3.680 2.000 1.840 553.942 2.10E–39

Direction × Subject 1.997 10.000 0.200 60.117 1.75E–27

Error (direction) 0.199 60.000 0.003 — —
Mode × Load 0.091 2.000 0.046 19.646 2.74E–7

Mode × Load × Subject 0.045 10.000 0.004 1.928 0.059
Error (mode × load) 0.140 60.000 0.002 — —
Mode × Direction 0.145 2.000 0.072 25.236 1.11E–8

Mode × Direction × Subject 1.113 10.000 0.111 38.813 1.69E–22

Error (mode × direction) 0.172 60.000 0.003 — —
Load × Direction 0.108* 3.084 0.035 6.413 4.77E–4

Load × Direction × Subject 0.383* 15.422 0.025 4.538 1.86E–6

Error (load × direction) 0.506* 92.529 0.005 — —
Mode × Load × Direction 0.067 4.000 0.017 7.016 4.13E–5

Mode × Load × Direction × Subject 0.186 20.000 0.009 3.905 1.45E–6

Error (mode × load × direction) 0.286 120.000 0.002 — —
Note: Design = mode load direction mode × load mode × direction load × direction load × direction × mode.
*Sphericity assumption not met, df adjusted (Greenhouse-Geisser).
df = degrees of freedom.
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Table 2.
Statistical analysis results: tests of between-subjects effects.

Factor
Type III Sum

of Squares
df Mean Square F-Value p-Value

Intercept 83.217 1.000 83.217 55,817.591 1.2E–50

Subject 0.067 5.000 0.013 9.000 2.61E–5

Error 0.045 30.000 0.001 — —
df = degrees of freedom.

Table 3.
Results from post hoc comparisons. Test statistics for loading conditions highlighted in gray.

Direction Load Subject
Mean Difference 
(game–avatar)

F-Value p-Value

EE FS 2 –0.223 43.855 6.96E–11

3 0.128 16.753 4.74E–5

4 –0.187 35.901 3.29E–9

5 0.118 14.350 1.65E–4

FL 2 –0.214 47.248 1.37E–11

3 0.258 58.555 6.42E–14

4 –0.095 9.335 0.002
5 0.104 11.197 0.001

7 0.117 14.013 1.96E–4

L25 2 –0.284 83.239 7.31E–19

3 0.202 41.830 1.85E–10

4 –0.249 63.840 5.42E–15

6 0.072 5.348 0.021
RE FS 1 –0.066 4.545 0.033

2 –0.170 29.624 7.22E–8

3 –0.181 33.891 8.81E–9

4 –0.138 19.561 1.13E–5

5 –0.114 13.376 2.74E–4

FL 2 –0.144 21.326 4.60E–6

3 –0.187 35.959 3.20E–9

2 –0.132 17.884 2.65E–5

3 –0.124 15.860 7.52E–5

6 0.147 22.358 2.73E–6

SF FS 1 –0.074 5.704 0.017
2 –0.192 37.918 1.23E–9

3 –0.184 34.875 5.44E–9

4 –0.158 25.591 5.37E–7

5 –0.083 7.133 0.008
FL 1 0.068 4.741 0.030

2 –0.142 20.621 6.57E–6

3 –0.273 76.479 1.59E–17

L25 1 –0.087 7.854 0.005
2 –0.093 8.836 0.003
3 –0.342 120.532 5.09E–26

4 –0.088 7.885 0.005
EE = elbow extension target, FL = arm floating condition, FS = arm fully supported condition, L25 = 25 percent loading condition, RE = reaching target, SF = 
shoulder flexion target.
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elbow extension, which demanded additional effort to 
fight the flexion synergy.

Task Versus Impairment-Based Rehabilitation Robotics
Although most rehabilitation robotic systems with 

integrated video games focus on a task-oriented thera-
peutic approach, recent work from a Massachusetts Insti-
tute of Technology group [51] suggests that robotic 
therapy aimed at impairment reduction may be the most 
effective use of robotic technology. This supports previ-
ous findings by Platz et al. that suggest that the specific 
content of training is key for motor control recovery in 
severely impaired people with hemiparetic stroke [52]. 
These studies, in conjunction with recent intervention 
studies performed in our laboratory [11–12,53], support 
our stance on the development of impairment-based 
robotic interventions that use video games to create a fun 
and engaging experience for the subject.

The choice of a game like Air Hockey 3D was based 
on its requirement for reaching movements, which com-
bined with various levels of arm support generated by the 

haptic interface, translated it from a simple video game 
into an impairment-based therapeutic approach. Previ-
ously, Carignan and Krebs reported on the use of an air 
hockey game for interactive telerehabilitation based on 
the premise that the therapeutic outcome was improved 
when the therapy involved video games rather than rou-
tine exercises [54]. Additional research that compares the 
therapeutic effects of impairment versus functional task-
oriented robotics rehabilitation systems is clearly war-
ranted. Furthermore, development of such systems needs 
to be driven by scientific findings on the exact nature of 
the movement impairments present in people with stroke.

Rehabilitation Robotic Systems for Moderately to 
Severely Impaired Subjects with Stroke

Most rehabilitation robotics and virtual reality systems 
reported in the literature target the wrist and hand, which 
exhibit poor to nonexistent control in moderately to 
severely impaired people with stroke. Even some systems 
that target the shoulder and elbow require some level of 
hand control to hold onto the endpoint of the device, which 
again is only possible in mildly impaired people with 
stroke. However, it is the moderately to severely impaired 
segment of the stroke population that has the greatest need 
for rehabilitation programs to restore motor function of the 
paretic upper limb. For this reason, this study only included 
moderately to severely impaired subjects with stroke, and 
they are the focus of the intervention work and the targeted 
population of future development of rehabilitation video 
games combined with robotic systems in our group.

Future Development of Impairment-Based Rehabili-
tation Systems

An important finding of the current study is that 
video games such as Air Hockey 3D, where specific 
reaching targets are not present and do not directly affect 
the success in the game, may not be sufficient to promote 
reaching in parts of the workspace compromised by the 
expression of the flexion synergy post brain injury. 
Games in which the reaching targets are located in the 
workspace affected by the flexion synergy are expected 
to encourage better performance, while at the same time 
keeping the interest and motivation of the subject. An 
added advantage of the future development of such video 
games is that targets can be adjusted online as subjects 
become more successful in reaching them as the thera-
peutic protocol progresses.

Figure 4.
Reaching performance. Five out of seven subjects were able to reach 
farther while playing video game compared with avatar feedback in 
certain target directions (SF, RE, or EE) and loading conditions (FS, 
FL, or L25) as indicated by blue, green, and red colored dots.
Difference in reaching distance in each of these conditions was 
statistically significant (p < 0.05). EE = elbow extension target, FL = 
arm floating condition, FS = arm fully supported condition, L25 = 25% 
loading condition, RE = reaching target, S = subject, SF = shoulder 
flexion target.
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In an effort to test the enthusiasm for Air Hockey 3D, 
we required subjects to complete a survey that asked 
which feedback method they preferred. Although we did 
not analyze results from the survey for statistical signifi-
cance, anecdotal evidence pointed to Air Hockey 3D as the 
preferred method for performance of reaching movements. 
We had subjects who would continue playing the video 
game even after the data collection had concluded. Further 
investigation into the effects of using a video game such as 
Air Hockey 3D on long-term therapeutic interventions is 
warranted by the enthusiastic response from the subjects in 
our study. It is possible that although we did not see an 
advantage over the simple avatar feedback in a single ses-
sion, the effect of impairment-based repeated exercise in 
an engaging environment can generate greater motor func-
tional gains.

In recent years there has been a significant increase in 
the use of video game systems for exercise and physical 
activity in widespread populations. An example of such a 
system is the game Wii Fit Plus (Nintendo Co. LTD; 

Kyoto, Japan) for the Wii console system (Nintendo Co. 
LTD), where users can create specialized workout rou-
tines. The early success with the Wii shows that there is 
great interest in this approach where exercise and therapy 
can be a fun and engaging experience. Now is the time to 
apply the same principles to stroke rehabilitation in the 
development of virtual reality and robotic systems fully 
integrated with video games to enhance the outcomes of 
therapeutic interventions. Furthermore, it will be a require-
ment for these systems to integrate haptics and robotics to 
allow direct treatment of impairments like weakness and 
the loss of independent joint control. It should be noted 
that not all robotic systems include or even have the ability 
to provide haptic feedback, while the converse is also true; 
not all haptic systems rely on robotics. Finally, the anec-
dotal evidence gathered from the subjects in this study in 
conjunction with our experience in stroke rehabilitation 
elicits great enthusiasm for a video game approach. Our 
goal is that in the near future, people with stroke will 
unknowingly receive therapy while playing fun and chal-
lenging video games.

Figure 5. 
Reaching performance. Each panel shows reaching performance for both avatar feedback (thin color lines) and game feedback (thick cyan lines). 
Subjects performed reaching movements with avatar feedback to three targets (SF, RE, and EE). Blue triangles indicate maximum reaching 
distance in direction of each target. Black arcs represent theoretical maximum arm reach based on arm length. Reaching performance on (a) FS, 
(b) FL, and (c) L25. EE = elbow extension target, FL = arm floating condition, FS = arm fully supported condition, HT = home target, L25 = 25% 
loading condition, Max = maximum, RE = reaching target, SF = shoulder flexion target.
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CONCLUSIONS

This study examined the effect of visual feedback on the 
reaching performance of moderately to severely impaired 
people with stroke by comparing an avatar of the arm with 
the Air Hockey 3D video game. Subjects performed the 
reaching tasks and played Air Hockey 3D under three shoul-
der loading conditions. The results from the study showed 
that the reaching distances achieved with the avatar feed-
back were greater on average than those achieved with Air 
Hockey 3D across conditions. In some conditions, however, 
subjects were able to reach farther while playing the game. 
In addition, subjects unanimously chose Air Hockey 3D
over the avatar as the optimal feedback for rehabilitation 
interventions. Although the results of this study showed, on 
average, better performance for the task-oriented paradigm, 
the exceptions, plus the unanimous acceptance of the video 
game, showed that there is promise in the development of 
rehabilitation video games and robotic systems that target 
specific impairments like the loss of independent joint con-
trol. The combination of video games and robotics to create 
a haptic interface will allow the design of video games that 
include specific reaching targets in the workspace compro-
mised by the expression of the loss of independent joint con-
trol following stroke. The ultimate goal will be to develop 
video games that directly address movement impairments in 
order to be useful for stroke rehabilitation while providing a 
fun and challenging experience. Further research studies 
will need to validate the use of video games as an effective 
rehabilitation tool.
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